Building an National Robotics Program

Henrik I Christensen KUKA Chair of Robotics

THE TECHNOLOGY COLLABORATIVE Accelerating Digital & Robotic Innovation.

CCC - Roadmap

- Effort to investigate a roadmap for robotics in US
- What are the promising opportunities/applications
- What are the main obstacles to progress?
- What are the key science challenges?
- What is a good strategy to make progress?

• Will investments in robotics pay off?

Background Analysis

Sector	Average Growth	Growth
Robotics – manufacturing, service and medical	20%	0-120%
IP Companies	21%	15-26%
Healthcare/eldercare	62%	6-542%
Entertainment/toys	6%	4-17%
Media / Games	14%	2-36%
Home appliances	1%	-4-7%
Capital equipment	8%	-4-20%
Automotive	0%	-11-13%
Logistics	21%	4-96%
Automation	4%	2-8%

Consolidated annual growth rates over a set of 280 U.S. companies for the period 2004-2007.

Driving Research?

Image: Customer
Image: Market Need
Image: Businesses
Image: Business

Researcher

Process

4 topical workshops

- Manufacturing & Logistics
 - Trinkle, Kumar, Goldberg, Christensen
- Service Robotics
 - Brock, Thomasmeyer, Christensen
- Medical / Healthcare
 - Mataric, Okamura, Christensen
- Emerging Technologies
 - Mason, Hollerbach, Christensen

Synthesis?

Robotics

Timeline

March 08	Start of Effort, Call for Proposals
June/Aug 08	Workshops
Oct 08	Draft Topical Roadmaps
Dec 08	Completed Roadmap Draft
Mar 09	Community Feedback
May 09	Presentation to Congress
Jul 09++	Agency Discussions
Fall 09	Discussion of Programs
2011	Launch of Efforts

Societal Drivers

% of population above 65 (UN 2008 Data Series) WesternEurope — USA India Japan

Robotics

& Intelligent Machines

Analysis for each area

Economic / Societal Drivers

Core capabilities needed for applications

R&D challenges

• 5, 10 and 15 year expectations

Manufacturing

- Large Scale Manufacturing
- Lack of SME Focus
- Flexibility is key to progress
- Logistics is major target
- Process consideration is key
- Perception, Learning & Safety

Manufacturing

- ~II% of GDP (significant overall impact)
- Focus has been on large scale manufacturing
 - "Bring manufacturing home"
- Empower small and medium sized companies
- Simplified use, added flexibility & versatility

- All consumer goods are on a truck at least once!
- < 15% of process has been automated
- The transport cost could be reduced by 20-30% or ~5% of final cost and energy
- Flexible palletizing. Ease of programming, small series delivery tasks, ...

Technologies

Control and planning

Learning and adaptation

Modeling, simulation and analysis

Physical human-robot Interaction

Robust, high-fidelity sensors

Socially-interactive robots

Novel mechanisms and high-

performance actuators

Perception

Formal methods

Architecture and representations

Issues

Critical Capabilities

Perception to enable operation in unstructured environments Human-like dexterous manipulation Adaptable and reconfigurable assembly Robots working with humans Autonomous navigation Rapid deployment of assembly lines Green manufacturing Model-based integration and design of supply chain Interoperability of component technologies

Nano manufacturing (nextgeneration products)

Manufacturing Domains

Co-X: Robot as human-robot cooperators

- Co-Worker
 - Manufacturing, Logistics, Medical Application
- Co-Inhabitants
 - Elderly care, home assistance, safe driving
- Co-Protectors
 - Defense and home-land security applications

Co-Workers

Next Generation Co-Workers?

NASA & GM

<u>GM</u>

Co-Workers

Co-Inhabitants

Co-Inhabitants

Cleans under and around furniture, using its light-touch bumper to gently touch and move around the obstacle.

Automatically avoids stairs and drop-offs.

Self-adjusts from carpets to hard floors and back again.

Co-Inhabitants

Key Capabilities

- Adaptable & Reconfigurable Manufacturing
- Autonomous Navigation
- Green Manufacturing
- Human-Like Dextrous Manipulation
- Model Based Integration and Design of Supply Chain
- Nano Manufacturing
- Safe Manufacturing

Robotics and Intelligent Machines @ Georgia Tec

NRI - Organization

- Making a clear cut plan for moving forward
 - \$, problems and a strategy
- Engaging the political actors early
- Push by NSF (& OSTP)
- Program is now \$50-70M/yr
- Other programs also getting launched
 - Defense, Equipment, Commerce, ...

Moving forward

- Academia / Industry / Government alliance
- Pushing for a broad agenda
- Roadmap has many of the details
 - http://www.us-robotics.us
- Creation of coordination across agencies and industries
 - National Summit on Robotics across agencies

- Ind week of April every year
- Defined/written into law by the US congress
- Broad set of activities
- www.nationalroboticsweek.org

Robotics-VO

- A national network for robotics Robotics-VO
- Roadmapping & agency coordination
- Education and Training
- Tech-Transfer
- Dissemination and Press
- {and Administration}

Robotics-VO

THANK YOU!