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Grasp Learning in Industrial Biaicking

® Main Goals:
® Learning in industrial bipicking
® Evaluation of the use of the dexterous hands ShAl an
Industrial production context

® Additional Achievement
® Use of simulation for replacing human modelling of grasps
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Learning in industrial birmpicking

® Duringbin-pickinga largeamountof
experiencds generated

® Cycletime of 25secondgyivesaround
100000experiencesa month

® Currentlythe successate variesbetween
50% and 90%ependingon the objects
and gripper

® Graspdefinition requiresalot of manual
design

® The largeamountof experiences yet
completelyunused

® Aim: Improvementthrough learning
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Achievement 1: Improving of
manually chosen grasp preferences

L-P. EIIekllde J. A. Jargensen, D. Kraft, N. Kruger J. Piater and H. G. Petersen.
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10-07-2013 The Maersk McKinney Moller Institute 3




Cognitive & Applied Robotics (CARO) RO{’,?;:S?, tgg ] Féoob\zt

Achievement 1: Results on improving of
manually chosen grasp preferences
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Conclusions

® Learning can improve bipicking in an industrial context
® Utilizing vast amount of available experience
® Reduction of error rate by more than 20% in two-ses
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Achievement 2: Replacing Manual desic
through simulation

® Problem: Potential grasps are designed manually
® Replace by process by simulation

Automatic grasp generation Pl In-production learning In-produion

Compute
initial
Priorities

Grasp Quality Grasp
Planner Labeling Filtering

Manual grasp generation
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Achievement 2: Replacing Manual desic
through simulation
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Conclusions

® Learning can improve bipicking in an industrial context
® Utilizing vast amount of available experience
® Reduction of error rate by more than 20% in two-ses

® Dynamic simulation can substitute manual intervention in grasp
definition while keeping similar performance
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Achievement 3: Show potential of use o
dexterous hands in bispicking

ASharp edges
ARather heavy
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Conclusions

® Learning can improve bipicking in an industrial context
® Utilizing vast amount of available experience
® Reduction of error rate by more than 20% in two-ses

® Dynamic simulation can substitute manual intervention in grasp
definition while keeping similar performance

® Dexterous grippers have a large potential for industrial bin
picking
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State of finger-pads durmg eXpenmen s.
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And after more than 5000 grasps
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® Learning can improve bipicking in an industrial context
® Utilizing vast amount of available experience
® Reduction of error rate by more than 20% in two-ses

® Dynamic simulation can substitute manual intervention in grasp
definition while keeping similar performance

® Dexterous grippers have a large potential for industrial bin
picking

® But the SDH2 Schunkhand is not yet ready for use in an
Industrial context
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Learning can improve bin-picking in Dexterous gripper.s have.a
an industrial context large potential for industrial

vain-picking |
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Dynamic simulation can substitute JBut the SDH-2 Schunk hand is
manual intervention in grasp not yet ready for usein an
definition while keeping similar industrial context
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